On Descents in Standard Young Tableaux
نویسنده
چکیده
In this paper, explicit formulae for the expectation and the variance of descent functions on random standard Young tableaux are presented. Using these, it is shown that the normalized variance, V/E2, is bounded if and only if a certain inequality relating tableau shape to the descent function holds.
منابع مشابه
On the enumeration of d-minimal permutations
We suggest an approach for the enumeration of minimal permutations having d descents which uses skew Young tableaux. We succeed in finding a general expression for the number of such permutations in terms of (several) sums of determinants. We then generalize the class of skew Young tableaux under consideration; this allows in particular to recover a formula for Eulerian numbers which is a direc...
متن کاملA Combinatorial Setting for Involutions and Semistandard Young Tableaux
We establish a combinatorial connection between the sequence (yn,k) counting the involutions on n letters with k descents and the sequence (an,k) enumerating the semistandard Young tableaux on n cells with k symbols. This allows us to exhibit an explicit formula for the integers yn,k and find combinatorial properties of the two sequences. In particular, we show that the sequences (yn,k) are not...
متن کاملThe descent statistic on involutions is not log -
We establish a combinatorial connection between the sequence (in,k) counting the involutions on n letters with k descents and the sequence (an,k) enumerating the semistandard Young tableaux on n cells with k symbols. This allows us to show that the sequences (in,k) are not log-concave for some values of n, hence answering a conjecture due to F. Brenti.
متن کاملOn joint distribution of adjacencies, descents and some Mahonian statistics
We prove several conjectures of Eriksen regarding the joint distribution on permutations of the number of adjacencies (descents with consecutive values in consecutive positions), descents and some Mahonian statistics. We also prove Eriksen’s conjecture that a certain bistatistic on Viennot’s alternative tableaux is Euler-Mahonian. Résumé. Nous demontrons plusieurs conjectures d’Eriksen concerna...
متن کاملThe descent statistic on involutions is not log-concave
We establish a combinatorial connection between the sequence (in,k) counting the involutions on n letters with k descents and the sequence (an,k) enumerating the semistandard Young tableaux on n cells with k symbols. This allows us to show that the sequences (in,k) are not log-concave for some values of n, hence answering a conjecture due to F. Brenti.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 7 شماره
صفحات -
تاریخ انتشار 2000